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Introduction: Due to the improvement of technology during the last decade, using machine
learning algorithms for predicting diseases has found great importance. The goal of this
research was to investigate the importance of Naive Bayesian network as the most applied
algorithm in predicting diseases and classifying relevant articles related to disease prediction
with data mining algorithms.

Methods: This was a systematic review study. A comprehensive search was performed from
2007 to 2017 in online databases and search engines including Scopus, Science Direct, web
of science and MEDLINE.

Results: From a total of 90 identified abstracts through the research, 27 ones were

compatible with inclusion and exclusion criteria. Naive Bayesian network was compared
with other algorithms and in 92% of articles (25 articles out of 27), it had better accuracy in
disease prediction. Results of this research showed effectiveness of Naive Bayesian
algorithm in disease prediction.

Conclusion: Naive Bayesian network is one of the best algorithms for disease prediction in
comparison with experts’ decision and other algorithms. This algorithm can be used beside
physicians’ decision to improve the accuracy of disease prediction.
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