Search published articles


Showing 2 results for Riahi

Ehsan Aghaenjad, Ramazan Taimourei-Yansary, Ali Riahi,
Volume 6, Issue 2 (Summer 2019)
Abstract

Introduction: Different factors are effective in detecting heart abnormalities. The greater the number of these factors, the greater the uncertainty in the detection of heart abnormalities. In the uncertainty condition in response of prediction model, the fuzzy systems are one of the most effective methods for generating an acceptable response.
Method: In this applied study, 3240 records related to heart abnormalities were reviewed, each record contained heart sounds of healthy and unhealthy groups. Then, using fuzzy system, the rules of data for the input samples were extracted and the rules were used to categorize the heart abnormalities. Due to the dependency of the effective factors on heart abnormalities, many identical rules with a similar function that result in additional processing and reduced efficacy, will be produced. In the proposed method, the Hummingbird algorithm were used to choose the optimal output rules. Then, using the optimum output rules, the inputs data were categorized into normal and abnormal classes. Data were analyzed using the root mean squared error (RMSE) method.
Results: It was revealed that the mean accuracy and time of diagnosis of heart abnormalities in the proposed method were 99.6% and 0.56 seconds, respectively, indicating higher efficiency compared to the other similar studies.
Conclusion: Compared to the other methods, the proposed model provides more accurate diagnosis and classification.


Azita Koohestani, Amir Ashkan Nasiripour, Mahdi Riahifar,
Volume 8, Issue 3 (12-2021)
Abstract

Introduction: Lack of financial resources and liquidity are the main problems of hospitals. Pharmacies are one of the sectors that affect the turnover of hospitals and due to lack of forecast for the use and supply of medicines, at the end of the year, encounter over-inventory, large volumes of expired medicines, and sometimes shortage of medicines. Therefore, medicine prediction using available retrospective data leads to improved resource management in hospitals. Due to the high capability of data mining in modeling medical problems, selected algorithms were used to determine the optimal model of medicine preparation.  
Method: In this cross-sectional study, to investigate different types of data mining algorithms, an information form was developed based on the design objectives and then defined in the form of reports in the hospital information system. The data were extracted using Crystal Report software. To develop the model, the accuracy of the data mining prediction algorithms including KNN, SVM, NN, Random Forest, LR, and Adaboost was examined based on MSE, RMSE, MAE, and R2 criteria in Weka software.
Results: Concerning R2, MAE, and RMSE criteria, Adaboost method (0.78, 247, 827) and random forest method (0.6, 1170, 1868) had the highest accuracy compared to other models and reduced the error rate more. Other methods with the above criteria had poorer performance in predicting the research problem.
Conclusion: The results of this study indicated that the Adaboost and random forest methods are more accurate than other methods. A small percentage of hospitals plan to manage the preparation of medicines; thus, it is suggested that managers of hospitals and pharmacies use data mining in the management of their respective units.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Health and Biomedical Informatics

Designed & Developed by : Yektaweb